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For the Ising model on a bcc lattice we analyze the ground states associated 
with different interfaces and discuss some consequences on the roughening 
transition. 
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1. I N T R O D U C T I O N  

Recently a great deal of effort has been devoted to the study of the 
equilibrium crystal shapes and the related roughening transitions of their 
facets (see Refs. 1-4 for recent reviews of both experimental and theoretical 
results). In the present work we discuss some of these problems for the case 
of the Ising model on a bcc (body-centered cubic) lattice. We study the 
ground states corresponding to different interfaces between phases of 
opposite magnetizations and use the information gained for a description 
of the equilibrium shape of a "droplet" surrounded by the opposite phase. 
The point is that the set of these ground states has a rather rich structure. 
Under a fixed boundary condition a large amount of ground configurations 
may contribute to the ground state and the corresponding interface may 
turn out to be either smooth (rigid) or rough. 

For  the (100) interface, we rely on the pioneering work of 
van Beijeren, (s) who introduced the so-called body-centred solid-on-solid 
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(BCSOS) model as a limit of the Ising model on a bcc lattice with nearest 
neighbor coupling tending to infinity, and submitted a rigorous description 
of a roughening transition for the BCSOS model. Reinterpreting slightly his 
approach and considering the low-temperature behavior at fixed nearest 
neighbor coupling and with the next nearest neighbor coupling vanishing 
along lines J=c~T, we show how the BCSOS model may be used to 
describe the ground states obtained in the limit, and how the resulting 
behavior depends on the value of the slope e of these lines. The existence of 
a critical value c~R at which a smooth (100) interface becomes rough 
suggests that there is a curve of roughening temperatures TR(J ) 
approaching the point J - - 0 ,  T =  0 with the slope ~R. 

There is actually a whole class of interfaces with general orientations 
for which we again get an equivalence of ground states with the states of 
the BCSOS model under the corresponding boundary conditions. A 
representative of another class of interfaces is the (111) interface. It turns 
out that in this case the ground state is equivalent to a state of the so-called 
triangular Ising solid-on-solid (TISOS) model introduced by Bl6te and 
Hilhorst (6) and further studied in Ref. 7. An important fact is that all 
interfaces fall into one of the above classes and thus one has a rigorous 
description of all related ground states and corresponding surface tensions 
(interface free energies). This information may be further used for a 
description of the low-temperature asymptotic behavior of the equilibrium 
crystal shape. Here we rely on the standard Wulf construction, (1-3) even 
though its rigorous and direct statistical mechanical verification has only 
begun to emerge/8) 

Our paper is organized as follows. First we clarify what we mean by 
ground states. We introduce them in Section 2 together with some related 
notions following the presentation of Dobrushin and Shlosman. (9) Section 3 
is devoted to a study of interfaces for the Ising model on a bcc lattice. In 
addition to the discussion of ground states as described above, the rigidity 
of the (100) and the (110) interfaces is proved for couplings J and tem- 
peratures T inside certain regions of the (J, T) plane. Equilibrium crystal 
shapes in the low-temperature region are then discussed in Section 4. The 
main results of the present paper were announced in Ref. 10 and presented 
in Ref. 11. 

2. G R O U N D  S T A T E S  

Our aim in this section is to introduce some general notation and 
different notions concerning ground states. We follow, with minor 
modifications, the terminology of Dobrushin and Shlosman. (9) 

We consider a model on a lattice n_, with configuration space ~ = S t, 
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where S is a finite set of values of the spin attached to each lattice site, and 
with a finite-range interaction {~0A }, A ~ ~_. The functions (CA: sA --* ~ may 
also be understood as A-cylindrical functions on f2. Denoting by a v the 
restriction of a configuration ~ ~ f2 to a subset V c L, a v = { ~_~ }x~ v, and 
by avWavc  the configuration (in ~ )  whose restrictions to V and its 
complement V~'=D_\V are a v  and ~v~, respectively, we introduce the 
Hamiltonian in V under a boundary condition 5 ~ Q by 

Hv(crvl~)= ~ ~On(~vw#w) 
A:A c~ V ~- ~ 

The finite-volume Gibbs states on Q v =  S v (a specification) 

~H(~ I  5) = z~,(5) 1 e x p E - f l H v ( ~ v l  ~)] 

where 

Zv(<Y)= ~ e x p [ - / 3 H v ( a v l 5 ) ]  
e Y V ~ V  

determine (by the DLR equations) the set N(fiH) of Gibbs states (on ~) 
corresponding to a Hamiltonian H at an inverse temperature fi (see, e.g., 
Ref. 12 for an exposition of the theory of Gibbs states suitable for our 
purposes). If a Gibbs state # �9 N(flH) happens to equal the limit 

under a fixed boundary condition 6, we shall call it the Gibbs state 
corresponding to a boundary condition & 

Now, ground states are defined simply as Gibbs states at fl = ~ ,  i.e., as 
Gibbs states with the specification 

~ o o  

Clearly, an explicit formula is 

++ {'o ~v (orris)= /IMv(~)l 

where 

if a v e M v ( ~ )  

if avCMv(5)  

My(5)= {avet?v]Hv(avlS)= min Hv((Tv[~)} 
5VG U2V 

is the set of ground configurations in V under the boundary condition 5. 
c~H Occasionally we shall refer to the measure #v  (" r S) on f2v as a ground 

state in V under a boundary  condition & 
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If a ground state is supported by a single configuration a E ~,  i.e., if it 
is the Dirac measure 6o on Q, we call it a rigid ground state. Examples of 
rigid ground states are the + and - ground states of an Ising ferromagnet. 
It is easy to see that 6~ is a rigid ground state if and only if ave My(a) and 
IMv(a)l = 1 for every finite V c  L Often the set Mv(~) is quite rich and it 
may lead to a nonrigid (or random) ground state, which is a genuine 
measure supported on a large set of configurations. This is the case of, e.g., 
the Ising antiferromagnet on a triangular lattice or the Potts 
antiferromagnet on square or cubic lattices. 3 When describing interfaces in 
the next section we shall meet ground states of a particular type. The con- 
sidered boundary condition ~ will lead, in some cases, to a large set My(5) 
(a set of widely fluctuating interfaces) equivalently described as a set of 
configurations of a certain SOS model. The fact that a Gibbs state of this 
SOS model does not exist in the thermodynamic limit (this is possible since 
the set of one-site configurations of an SOS model is noncompact (9)) then 
reflects the fact that the ground state under the boundary condition ff (in 
the thermodynamic limit) actually turns out to be just a combination 
�89 + + 6_ ) of rigid, translation-invariant + and - ground states. 

Another useful notion is that of a weak ground state. Let us consider 
an additional finite-range interaction {~A} and the corresponding 
Hamiltonian H and introduce the specification (a weak ground state in V 
under the boundary condition ~ corresponding to the direction H) 

#~H.n(avl~)= lim #~v(Z4+Ol~)(avl ~) 

l e x p [ - / t v ( ~ v [  a) ]  if av~mv(a)  
= Z~v~Mv(~)exp[--Hv(ffv[~)] 

0 if avCMv(ff) 

Gibbs states with these conditional probabilities will be called weak ground 
states (corresponding to the direction t7t). Again we may have rigid or 
random weak ground states. 

As we shall see in the following sections, the set of (weak) ground 
states may have quite a rich structure. Even though it may be of interest in 
itself, the most interesting aspect is what it says about the Gibbs states at 
nonvanishing temperatures fl va oo. Thus, one is led to the notion of stable 
(weak) ground states, which are defined as those (weak) ground states that 
are the limit when fl-~ oo of Gibbs states corresponding to flH [respec- 
tively to fi(H+fI/fi)]. Alas, no general criteria of stability are known. 

3 Notice that even the problem of classification of different ground states for the latter models 
is still not entirely clarified (cf. Ref. 13). 
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Some particular cases of periodic rigid ground states are covered by the 
Pirogov-Sinai theory (14) and a class of non-translation-invariant ground 
states was tackled in Ref. 15. A general criterion of stability for rigid (weak) 
ground states was conjectured by Dobrushin and Shlosman. (9) Since their 
paper is not easily available, we shall, for the reader's convenience, review 
here their conjecture. 

To state it, we shall need some additional notions. We shall also sup- 
pose that [1_ is a regular crystal lattice and {(0A} a translation-invariant 
interaction. 

The diameter of a set V c  1_ is the supremum of distances of all pair of 
lattice sites in V, and V is said to be n-connected if for every pair (x, y) of 
sites in V there is a sequence {x~,..., Xm} ~ V such that x~ = x ,  Xm = Y, and 
the distance from xk to Xk+l, k = 1,..., m - 1 ,  is not larger than n. Given 
a configuration o-, we consider its local connected perturbations. We 
denote by X,,(a) the set of configurations 6 ~ f2 for which the set P(8 I~r)= 
{ x ~ l _ [ 5 ~ a x }  is finite and n-connected. For  6El2  we define the excess 
energy of 6 with respect to cr by 

E(d I o-) = ~ [q~A(8) -- (pA(0-)] 
A 

We say that a ground configuration cr is nonperturbable 4 if its local pertur- 
bations Z'n(a ) have bounded excess energy, namely if for all n > 0  and 
E > 0, one has 

sup{diam P(~l a)l 8 ~ Xn(o-) and E(~[ ~) < E} < oo 

The second part of the  Dobrushin and Shlosman conjecture (we do not 
state here the first part, which concerns the rigid weak ground states) is the 
following statement. 

C o n j e c t u r e .  (9) Assume that the set of all periodic rigid ground 
states is finite and transitive with respect to the group of local symmetries 
and translations of {(0A}. Then a rigid ground (not necessarily periodic) 
state ~ is stable if and only if the ground configuration cr is nonper- 
turbable. 

Several statements in the following section are actually a proof of this 
conjecture in some particular cases. 

3. ISING M O D E L  ON A BCC LATTICE: INTERFACES 

A bcc lattice L consists of two simple cubic lattices Z 3, to be called 
sublattices L~ and L2, which are mutually shifted by the vector (1/2, 1/2, 

4 We replace here the term nondegenerated used in Ref. 9 by nonperturbable, since the term 
degenerated is widely used in the physical literature when referring to a ground state that is 
nonrigid in our terminology. 
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1/2). A site x in, say the sublattice L~ has eight nearest neighbors (n.n.), all 
of them belonging to the sublattice L2, and six next nearest neighbors 
(n.n.n.), belonging again to L~. The configuration space is Q = ( - 1 ,  + 1) L 
and the energy of the corresponding Ising model is given by 

nn nnn 

where the first sum runs over all pairs of n.n., and the second over all pairs 
of n.n.n. We shall restrict ourselves to ferromagnetic n.n. coupling (Jo > 0), 
bearing in mind that the results may be transformed into the corresponding 
ones for Jo < 0 by changing the sign of all configurations (as well as the 
boundary conditions) on, say, the sublattice L1. 

The conjectured phase diagram for this system is discussed in Ref. 16. 
At low temperatures a first-order transition line, the equation of which may 
be written as J/Jo = f(fl), with f ( o o ) =  -2/3,  separates two regions. In the 
first region, J/Jo>f(fl), two ferromagnetically ordered phases (with 
positive and negative magnetizations) coexist, while in the second region 
the phases have an antiferromagnetic order on both sublattices. This fact 
may actually be proved by applying Pirogov-Sinai theory. Indeed, the 
periodic ground states of the system are, for J >  - (2 /3 ) Jo ,  the rigid states 
6+ and a_ ,  and for J < - ( 2 / 3 ) J o ,  the four rigid states associated to 
the ground configurations O'x=gl(--1) xl+x2+x3 if x e L ,  and a x =  
e2( - 1 )xj + x2 + x3 + 1/2 if x e L2, the four possibilities being given by choosing 
g 1 and e2 equal to + 1 or - 1 .  

We shall consider the region J > ( - 2 / 3 )  J0 at low temperatures, where 
two ferromagnetically ordered phases coexist. Our aim will be to study the 
behavior of the Gibbs states corresponding to particular interfaces. 

To this end, we shall specify a plane by its normal vector k--  
( k l ,  k2, k3) and consider the boundary condition ~(k) (or simply ~) defined 
to be fix = + 1 for the lattice sites above or on the considered plane (xk = 
Xlkl+xzk2+x3k3>~O), and fix= - 1  for x below it (xk<  0). 

Our claim will be that while the (110) interface is always rigid at low 
temperatures, there is a roughening transition for the (100) interface 
around J = 0. 

3.1. The (100) Interface 

When studying the ground states corresponding to the (100) boundary 
condition, the situation depends significantly on the sign of the n.n.n. 
coupling J. We shall analyze first the case J > 0. 

T h e o r o m  1. The ground state corresponding to the (100) boun- 
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dary condition for J > 0  is rigid. Moreover, the ground configuration is 
nonperturbable. 

ProoL Let ~ denote in this subsection the boundary condition ~(10o). 
To see that the ground state is rigid, it is enough to observe that in this 
case the set My(d) consists for any V of only one configuration, namely 
itself. We shall skip the formal proof of the nonperturbability of if, which is 
slightly cumbersome, though straightforward. Let us only illustrate the 
nonperturbability with respect to a particular type of excitation. Introduc- 
ing the orthogonal projection S of the bcc lattice onto the plane xl = 0 and 
taking a set Q ~ S, we may consider the configuration ~ v corresponding to 
elevating the interface by 1/2 above Q. Namely, 

~ x = + l  if (x2, x3)~Qandx1>~l/2 or (Xz, X3)q~Qandxi>~O 

~x = 1 otherwise 

The energy Hv(8vl ~) of this configuration is larger by about J 10QI (with 
10QI denoting the length of the boundary of Q) than the energy Hv(Svl ~) 
of the ground configuration. Thus, excitations whose energy does not 
exceed a given bound may not be constructed on a set Q whose diameter 
exceeds a certain value. | 

According to the Dobrushin Shlosman conjecture, this ground state 
should be stable. This means the existence at low temperatures of a non- 
translation-invariant Gibbs state with a rigid interface, i.e., a Gibbs state 
for which the interface in a typical configuration does not differ much from 
the ground configuration ~. 

Here the conjecture may indeed be proven. One possibility is to use 
the method introduced by Dobrushin ITT) for the Ising model on a simple 
cubic lattice and generalized later to other models./15~ Another approach is 
due to van Beijeren, (Is) which we follow in the next theorem. We get the 
same result using the characterization of the roughening transition in terms 
of the step free energy O'step , defined as the excess of surface free energy per 
unit length of a single step in an otherwise flat interface s, indeed, we may 
adapt the argument due to Bricmont et al. (2~ 

T h e o r o m  2. For  every J > 0  there exists rio(J) such that for every 
ri>---rio(J) the Gibbs state corresponding to the (100) boundary condition 
presents a rigid interface. Moreover, the step free energy corresponding to 
this interface is strictly positive. 

5 It was conjectured in Ref. 19 that the step free energy is vanishing when the interface is 
rough. 
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Proo f .  We associate with every X=(Xl, X2, X3) with xl>~ 1/2 its 
symmetric site x ' =  ( - x l ,  x2, x3) and the spin variables 

Sx = r + ax,, tx = ax -- ax, 

Rewriting H v ( a v l 6 )  in terms of these new variables sx, tx for x e  V and 
xl >~ 1/2, and the initial o-+ for x e V and Xl = 0, the new expression con- 
tains only ferromagnetic interactions and positive external fields. Hence, we 
may apply Lebowitz inequalities, ~21) in the same way as in the original 
van Beijeren proof, to show that the expectation (o-o) of the spin at the 
origin o-o will decrease if we introduce positive fields #x acting on all 
variables tx that belong to the plane Xl = 1/2, and let this field #x tend to 
infinity. Since this fixes all o-x in the plane x I = 1/2 to be equal to + 1 and 
simultaneously all o-x in the plane xl = - 1 / 2  to be equal to - 1 ,  we get 

< Cro > ~ m2(flJ) 

where (o-o) denotes the expectation of o-o in the original system and m 2 is 
the spontaneous magnetization of the two-dimensional Ising model (on the 
sublattice xt = 0) as a function of the coupling constant. If R J >  ~o, where 
~0=�89 ++,f2) is the critical value for the two-dimensional model, 
the magnetization m2 is strictly positive and hence also (o -0 )>0 .  Since 
symmetric points with respect to the plane x l = - t / 2  have opposite 
expectations, this implies the presence of a rigid interface. 

The argument concerning the step free energy is very close to the 
preceding one and we shall use the same notations. Let us compute the 
derivative of O'step in a finite volume (defined as the logarithm of the ratio of 
the partition functions with appropriate boundary conditions) with respect 
to the external field k+.+ for some x e V, xl = 1/2. This derivative, when 
expressed as the difference of correlation functions, is nonpositive, 
according to, again, Lebowitz inequalities. Hence, the finite-volume a+~p 
decreases when we let /+~-+ vo for all x ~ V such that x~ = 1/2, and we 
finally obtain 

where ~2 denotes the surface tension of the two-dimensional Ising model on 
a square lattice. Thus we prove that the step flee energy is nonzero if 
f lJ  > ~o. I 

R e m a r k  1. The arguments above may be applied to any 
ferromagnetic system with respect to a chosen interface, provided that the 
following conditions are satisfied: (a) the system is symmetric with respect 
to the plane of the interface, (b) all bonds crossing this plane are 
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orthogonal to it and join symmetric sites, (c) the two-dimensional system 
obtained as the restriction to this plane of the original system has a spon- 
taneous magnetization, such as the Ising systems on a simple cubic lattice 
with nearest and next nearest neighbor attractions considered in Ref. 1. 

Remark 2. If O-step > 0, then there is a cusp in the Wulf plot in the 
direction (100). The proof of this fact in our case is the same as that given 
by Bricmont et al. (22) for the Ising ferromagnet on a simple cubic lattice. 

In the case J =  0 we are confronted with a new situation. The ground 
state corresponding to the (100) boundary condition is no longer rigid. 
Actually, many ground configurations belong to the set Mv(~) and, 
already at zero temperature, the system is governed by a nontrivial random 
ground state. To get some information about it we shall notice that it is 
equivalent to the exactly solvable body-centered solid-on-solid (BCSOS) 
model introduced by van Beijeren/5) 

Let 5 be a two-dimensional square lattice Z 2 and let 51 and 52 be its 
sublattices formed by sites i =  (i~, i2) for which i~ +i2 is even and odd, 
respectively. Consider the set Z s of height configurations n =  (n~), i~ 5, 
with n~e2 if i e 5 1  and n~e7/+ 1/2 if ie~2, and let X~ be the set of such 
configurations for which Ini-n/I = 1/2 whenever i and j are nearest 
neighbors in 5 (their distance l i - j l  = 1). For  a fixed boundary condition 
r7 E Z'~ we denote by Z'AB(fi) the set of configurations in A ~ 5 for which 
n A U ~IA~ E ~ B  For any n e Z'~ and any elementary square s of the lattice 5, 
let us introduce the function z~(n), which equals zero if n~=nj for both 
diagonals (i, j )  of the elementary square and equals one in the remaining 
cases. For  every real parameter c~ we then define the specification of the 
BCSOS model by 

#]'~(nAjrt)=Z]':~(fi) l e x p [ - - ~ ,  0~Z~.(nAUfiA,.)] 
s cq A # S2~ 

with 

ZA~'~(fi) = ~ exp I -  ~ O~s(17ALJRAC) 1 
nA ~ 22BA(h) s c~ A v~ ~ 

We may now consider the Gibbs states of the BCSOS model in accordance 
with the general theory. In connection with the (100) boundary condition 
of the bcc Ising model, a special role will be given to the boundary con- 
figuration fi ~ Z'g: fii = 0 for i ~ 51 and ~i = 1/2 for i ~ 5 2. Notice also that if 
we denote by 7z(x) the orthogoal projection of x ~ L onto the plane xl = 0, 
the projection 7r(L) of all the lattice L is a square lattice and may be iden- 
tified with 5 by taking for the components of i=zc(x) the values il = 

822/47/5-6~12 
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xl +x2  and i 2 = x  1 - - X  2 (ft and ~ will always be used in this sense in this 
subsection; later, when a confusion with projections onto other planes 
could arise, we shall use the notation ~(10o)). 

T h e o r e m  3. The ground state corresponding to the (100) boun- 
dary condition and J = 0  is asociated to a state of the BCSOS model 
corresponding to the boundary condition ~ and ~ = 0. More precisely, let V 
be a cylinder orthogonal to the plane xl = 0 (such that the distances from 
the plane xl = 0 to its top and to its bottom are larger than the diameter of 
its base) and let A=~(V) .  Then there is a one-to-one correspondence 
between the ground configurations Mv(~)  and the configurations ZAS(~) of 
the BCSOS model which maps the ground specification ~ "  #v fay[6) into 
the specification #],~ A In). 

Proof. We consider the particular volume V together with the con- 
dition about its top and bottom to prevent the BCSOS surfaces from 
touching the boundaries of V, which would spoil the stated equivalence. 
Let f2~ be the set of configurations a E(2 for which ax~>~y whenever 
~z(x) = ~(y) and x l > y~. For  every a ~ (21 and i e S introduce the height 

n i= inf{x l  l a x =  +1 and ~ ( x ) = i }  

This defines a one-to-one correspondence between (21 and 2" 5. The energy 
corresponding to Hv(av]5)  in terms of the height variables may be easily 
computed. Up to an additive constant fixed so that H A ( f l  A ] / ~ )  : 0, one gets 

HA(n A I t  t) : Z 4Jo(Ini-  njl -- 1/2) + ~ 2J  I n i -  nil 
n n  n n n  

where ni = ~ whenever ir A. Clearly, if J =  0, the set Mv(~) corresponds to 
all height configurations for which HA(n A ]~ )=0 ,  namely the set of height 
configurations for which ]n~-nil = 1/2 whenever ] i - j ]  = 1. This is just the 
set XA~(n). The equivalence of specifications is then straightforward. | 

We postpone some comments on this theorem until Theorem 5 and we 
next analyze the case J < 0. It turns out that lim v, ~ #F" ( "  ] if) now does not 
exist. However, considering particular sequences of volumes { V, }, we may 
get different ground states corresponding to the boundary condition ft. 

T h e o r e m  4. Several different rigid ground states correspond to the 
(100) boundary condition and J <  0. The associated ground configurations 
are perturbable. 

Proof. We first prove that for J <  0 the set My(5)  is mapped onto a 
subset of s by the correspondence introduced in Theorem 3. As in the 
case J =  0, we have Mv(~)  ~ g21, where g2~ is the subset of configurations 
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introduced in the preceding proof. Now, it is useful to rewrite the energy as 
a sum of contributions of elementary squares s of the lattice 5, namely 

HA(nA l r l )  = ~ H,  
s ~ A # ~i~5 

with 

H s =  2Jo ~ Ins--nil + 2 J  ~ ]ni--nj]-Jo 
n n  nnn 

where the sums run over the four vertices of the square s. The minimal 
value - 2  ]JL of H,  is attained when ]ni-njl = 1/2 for all n.n. pairs, and 
In,-njl = 1 for one pair of n.n.n., while ]ni-njt = 0 for the other pair. 
Indeed, if Ins-nil = 1/2 for all pairs of n.n., then necessarily either 
Ins-  nil = 1 for one pair of n.n.n, and ]n~- nj{ = 0 for the remaining pair, or 
In i -n i l  = 0 for both of them. If, however, In i -n i l  r 1/2 for some n.n., then 
]n~-nil >~ 3/2 and Y~nn In~--nil ~> 3. By the triangular inequality, we have 

Ini-n/I ~ Y. Ini-nji, i ,j~s 
n n  n n n  

and therefore 

H,>~ (2Jo-- 2 I J I ) ~  In,--njl-Jo 
n n  

>/3(2J 0 2 IJ[) - Jo >/5Jo - -  4 [JI - -  2 I J[ >~ - 2  I J[ 

whenever ]J[ ~< (2/3) Jo < (5/4) Jo. Thus, the ground configurations of 
My(#) correspond to the configurations of XAB(t~) for which In i -n i l  = 1 for 
one pair of n.n.n, vertices in each elementary square s. 

It turns out that Mv(# ) depends on the particular form of V. We 
examine, for instance, the case in which V is a cylinder orthogonal to the 
plane x~ = 0 with a projection A = ~z(V), which is a parallelogram centered 
at the origin and with edges parallel to the lines x2 = x3 and x 2 = - x  3. 
Then there are four different cases according to whether the corners of A 
fall into one of the following subsets of 5: 

5o,o={ieSli~andi2even}, 5o, l={i~Slileven, i20dd} 

5~,o={ieSlilodd, i2even}, 51,1={ieSlilandi2odd} 

In each of these cases we get a unique ground configuration; e.g., in the 
first case the heights ni take the values 0, 1/2, 1, and 1/2 for i e  So,o, 5o,1, 
51,0, and 51,1, respectively. If we take limits over a sequence {V,} with 
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~(V,) in one of the above cases, we finally get four rigid ground states 
supported on the configurations 

ax = 1 whenever xl >~ 1 / 2 -  6 

a x = e ( - 1 )  x~+~2 whenever XI=--6 

a x = - I  whenever x1<~-1/2-3 

with the four possibilities being given by choosing e = +_1 and 6 = 0, 1/2. 
Any of these four configurations closely follows the horizontal plane 

xl = 0 and it may seem on first view that this interface may still be rigid at 
low temperatures. However, even low-energy excitations may significantly 
perturb the interface. Namely, supposing for concreteness that the ground 
configuration is the one obtained by the choice e = 1, 6 = 0, consider a con- 
figuration ~ corresponding to elevating the interface by 1 above Q, with 
Q c A  any rectangle with corners such that il and i2 are odd and sides 
parallel to the axes il = 0 and i 2 = 0. That  is, hi = ni + 1 if i ~ Q and hi = hi if 
iCQ. Then Hv(#vl~)-Hv(crvl~)=4J independently of the size of the 
rectangle Q. Thus, this ground configuration is perturbable. | 

This recalls the case of the interface for the Ising model on a square 
lattice, which may also be perturbed above large segments by paying only a 
fixed amount  of energy. Recalling that this fact led, for the two-dimensional 
model, to a proof of the roughness of the interface for all positive 
temperatures, (23) it is natural to expect that also in our case, for J negative, 
the interface is rough, in accordance with the conjecture of Dobrushin and 
Shlosman, (9) which would say that our rigid ground states are not stable. 
While we do not know how to make the above reasoning into a real proof, 
we get an additional argument for the roughness of the interface for J <  0 
from the investigation of the weak ground states in the case of a vanishing 
n.n.n, coupling. 

We shall thus extend Theorem 3 and consider the weak ground states 
corresponding to a "n.n.n. direction e," namely, to the situation where J0 is 
kept fixed and J = ~//~ while/~ --* oo. Inspecting the proof of Theorem 3, it 
turns out that the corresponding specification #~s0.~(a v l if) is equivalent to 
#A~'=(nAlr~) and thus we may control the dependence on c~ of the weak 
ground state. 

T h e o r e m  5. The weak ground state of the Ising model on a bcc 
lattice corresponding to the "n.n.n. direction e" and the (100) boundary 
condition is, by the one-to-one correspondence introduced in Theorem 3, 
mapped into the Gibbs states of the BCSOS model on a square lattice with 
parameter c~ and boundary condition ~. 
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We may refer to the van Beijeren analysis of the BCSOS model (5) to 
get a description of this weak ground state in terms of a six-vertex model 
with the weights Wl=W2=W3=w4=e-2~  and w 5 = w  6=1. If ~ > ~ R =  
�89 in 2, the six-vertex model is in the ferroelectric phase and the interface is 
rigid; if ~ < c~R, the results about the six-vertex model are usually inter- 
preted as describing a rough interface, which actually should mean that the 
corresponding infinite-volume Gibbs state of the BCSOS model does not 
exist and our weak ground state is translation-invariant. Notice that even 
though one would interpret the parameter e as an inverse temperature of 
the BCSOS model, the above theorem shows that in the genuine isotropic 
Ising model it rather plays the role of an angle in the (J, T) plane under 
which we approach the point J =  0, T--0. 

Now, an important question arises, that of the stability of these weak 
ground states, which is a reasonable, but still unproved hypothesis. Under 
this hypothesis the results above suggest the existence, for any small, 
positive J, of a roughening transition at a temperature TR(J ) such that 
TR(J ) --+0 for J ~ 0  with a slope given by the critical value :~R. (1~ 

Remork 3. As a consequence of Theorem 2 and the preceding 
analysis, we get, independently of the exact solution, the existence of an 
ordered phase for the BCSOS and the six-vertex model for e < Co. 

3.2. The  ( 1 1 0 )  I n t e r f a c e  

The ground states associated to the (110) interface, unlike those 
considered in the preceding subsection, behave uniformly in J. 

T h e o r e m  6. The ground state corresponding to the (110) 
boundary condition is rigid for any J > - ~ J 0 .  Moreover, the ground 
configuration is nonperturbable. 

ProoL The boundary condition i f = 5  (~1~ associated to the (110) 
interface belongs to the set ~'~1 introduced in the proof of Theorem 3 and 
corresponds to the configuration of heights h ~ Xg defined by ~i = il + i2- In 
this case the set S](~)  reduces to the single configuration ~A" This 
configuration satisfies I~,-~jl = 1 for all n.n.n, such that i 1 - i 2 = j l - j 2  
and gives a contribution to the energy H,  = 2J for every elementary square 
of the lattice. Any other configuration o-e f2~ would be associated with a 
configuration n e S~ satisfying In i -  nil >~ 1 for all the just mentioned n.n.n., 
in order to be compatible with the boundary condition, and would give a 
larger energy Hv(avl ~). This is clear if J>~0 and has already been shown, 
in the first part of the proof of Theorem4, when J < 0 ,  provided that 
IJI <~J0. Hence 5v is the unique ground configuration and therefore the 
ground state is rigid. 
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Next we sketch the proof of the nonperturbability of 6. Let Q be a 
subset of A = ~ ~ 1 7 6  and consider the configuration f f ~  associated 
with the height variables n i=  n i + l  if i~ Q and ~ =  ~ if i~ Q. Only the 
bonds (i,j) such that i~Q and j r  contribute to the difference 
Hv(~vl a ) -  Hv(Sv] ~) and the amount of this contribution is 4Jo if i a n d j  
are n.n. and i l> j l  or i2>j2, and 2J if i and j are n.n.n, neighbors and 
i~ + i2 =j~ +J2. There are exactly �89 ]0Q] bonds of the first type and at most 
]c~Q] bonds of the second type. Hence, even in the worst situation we have 

Hv(~ vl ~) - Hv(a vl ~) >1 1,3Ql(2Jo + 2J) 

Provided that J >  - J o ,  this excess of energy is proportional to 10Q[ and 
hence the ground configuration is nonperturbable. | 

In the same way as for the (100) interface, if J~>0, we can prove the 
rigidity of the interface (110) at low temperatures. 

T h e o r e m  7. For every J / > 0  there exists /3 o such that for every 
/~>/~o the Gibbs state corresponding to the ( l l0)  boundary condition 
presents a rigid interface. Moreover, the step free energy corresponding to 
this interface is strictly positive. 

Proof. The proof is obtained by arguing as in Theorem 1 (Remark 1) 
and realizing that the intersection of the (110) plane with the bcc lattice 
yields a two-dimensional Ising model which, even for J =  0, has a non- 
vanishing magnetization if/~J0 > ~0. | 

Remark 4. In the preceding proof the hypothesis J>~ 0 appears as a 
technical condition for the validity of the Lebowitz inequalities. One 
expects the same conclusion for any J inside the ferromagnetic phase. The 
proof of Theorem 6, for which only the condition J > - J o  was required for 
the rigidity, already suggested this fact, which could be made rigorous by 
using Dobrushin method. (~5'~7~ On the other hand (see Remark 2) for J/> 0 
it may be proven that if O'step > 0, then there is a cusp in the Wulf plot in 
the direction (110). 

3.3. The  (111)  In te r face  

We shall next point out that the ground state associated with the (111 ) 
boundary condition ff~Hl~ (which in this subsection will simply be denoted 
by if) can be described in terms of the triangular Ising solid-on-solid 
(TISOS) model considered by Nienhuis et al. (6'71 

Let 7]- be a triangular lattice. By taking el, e2, e3 to be three unit 
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vectors on the plane at angles 2~/3, the sites i e ]- may be described by the 
vectors 

i = i~ e I + i2e 2 q- i3e 3 

where il, i2, and i 3 a r e  integers, g is divided into three triangular sublat- 
tices Yo, YI, and Y 2 labeled in such a way that il + i2 + i3 for i on sublat- 
rice Y~ is equal to l plus a multiple of 3 ( l=  0, 1, 2). Consider the set • of 
height configurations n =  {ns}, i e ] - ,  with n ~ e 2 + l / 3  for i~Yz, l = 0 ,  1, 2. 
The configurations X~ of the TISOS model are obtained by restricting the 
configurations of X T to satisfy bn~-nil ~< 2/3 for all pairs (i, j )  of n.n. on 5]-. 
This is equivalent to the condition that the differences n ~ -n j  between n.n. 
in the oriented lattice (that is, for all n.n. i, j belonging respectively to T o 
and 51-~, to ~-1 and T2, and to T 2 and To) take the values - 1 / 3  or 2/3. 
Clearly, in any elementary triangle of 5]-, the difference n~-  nJ takes then the 
value - 1/3 on two sides of the triangle and the value 2/3 on the other side. 
Therefore a configuration of Xv r can equivalently be described by dis- 
tinguishing one side in each elementary triangle of the lattice T. This shows 
that X,~ is equivalent to the set of ground configurations of the Ising 
antiferromagnet (or the set of dimer configurations) on a triangular lattice. 

For  a fixed boundary condition ~ e X r we denote by z 'r(~) the set of 
configurations in A ~ T for which nA U hA' e X~ A special role will be given 
in this subsection to the boundary condition ~ defined by ~,. = l/3 for i e T~, 
l = 0 ,  1,2. Notice also that if we denote, for x eL, by it(x) [or  more 
precisely by Tc(Ill)(x)] its orthogonal projection onto the plane x~ +x2  + 
x 3 = 0, the projection ~(1_) of all the lattice [ is a triangular lattice, which 
may be identified with T by taking 

i = 7 c ( x ) = x l e l  + x2e2 + x3e  3 

We remark that ~([l)=g([2)=g(~).  

T h e o r e m  8. Let # denote the (111) boundary condition and let V 
be a cylinder orthogonal to the plane Xl + x2 + x3 = 0 (with top and bot- 
tom at a distance from this plane larger than the diameter of its base) and 
let A = 7r V). Then, there is a one-to-one correspondence between the 
ground configurations M y ( # )  and the configurations SAr(~) of the TISOS 
model, for any J >  -~Jo.  The ground specification #~H(avl #) is mapped 
into the state #r '~ A 1~) of the TISOS model with support on the set X~(~) 
and assigning equal probabilities to the configurations of this set. 

Proof .  We take v ( x ) =  ~(xl + x 2  +x3)  as a measure of the height of 
the site x e  [I_ on the (1, 1, 1) plane and we consider the set s 2 of con- 
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f igurations a e (2 for which a~ >~ ay whenever  v(x)> v(y) and ~z(x)= g(y) .  
For  eve ry  a e s and i e 7 we introduce the variable 

ni = inf{v(x)]a~ = +1 and 7~(x) = i} 

This defines a one- to-one  cor respondence  between if22 and X~-. The energy 
Hv(avl 5) in terms of the height variables m a y  be easily computed .  Up  to 
an addit ive constant  fixed so that  HA(VIA[VI ) = 0, one gets 

HA(nAlff)=ZJo{ ~ (]n~-nj+l/3]-l/3) 
i~  Y o , j e  V~ 

+ ~ ( I n s - n / +  1 / 3 1 -  1/3) 
i~ ~-l,J ~ T2 

+ ~ ([n,-nj+ 1 / 3 1 -  1/3)} 
i E 72,,J ~ TO 

+ 2 J {  ~ (In,-nj-2/3l-2/3) 
i E T 0  j ~  ~-1 

+ Z (Ini-nj-2/31 - 2 / 3 )  
i ~  ~J l , J ~  Y2 

+ ~ (]ni-nj-2/3l-2/3)} 
i E ~2,J E TO 

where the sums run over  all n.n. in Y and nt = ni whenever  i r A. For  any 
T I S O S  configurat ion,  i.e., for any n ~ NAt(if), we have HA(n A ]/~) = 0,  since in 
every e lementary  triangle of  ~-, for one of the sides lni-n~+ 1/31 = 1 and 
In~-nj-2/3]=O, while for the two other  sides ]ni-nj+ 1 /31=0  and 
]n~-nj-2/31 = 1. It  is clear that  if J~>0, the other  configurat ions of X v 
that  do not  belong to 2 ~  give an energy strictly larger than zero. Therefore,  
in this case the set XAT(t~) cor responds  exactly to the set of g round  con- 
figurations. We shall now show that  the same occurs in the case J <  0 in 
the considered interval. Let  t be an e lementary  triangle of ~- and  let us 
denote  by 0, 1, and 2 its vertices belonging, respectively, to Y0, 11-~, and ~2. 
Then HA(nAIFt) c a n  be writ ten as a sum of contr ibut ions  

H~=Jo{]no-nl + 1/31 + ] n l - n 2  + 1/31 + ] n 2 - n o +  1 / 3 [ -  1} 

-t- J {  [no - n~ - 2/31 + In~ - n2 - 2/31 + In2 - no - 2/3I - 2} 

associated to the e lementary  triangles of  11-. If  we write rn~ = n o - n I -t- 1/3 
and m z = n l -  n2 + 1/3, which for n e X v can be arb i t ra ry  integers, then 

H~=Jo{lmal + Im2l + Irn 1 q - m  2 - -  11 - - 1 }  

+ J { l m , - -  II + Im2--  II + [ml + m z l - 2 }  
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Now 

because 

H, = --Jo + 2 IJI + ( J o - I J I  ){ lmll + ]m2l + Iml + m 2 -  I t } 

+ IJI { I m l l -  I m l -  l j-I-Im21- Im2-  11 

+ Ira1 +m2- -  11-  {ml-I- m21 } > 0  

lml]-I-tm21 + ]m 1 -t-m 2 -- II > 1 

if n q~ S~- and 

I m , I -  [ m , -  l I+  Im2l-  Im2-  11+ Ira1 + m 2 -  l I - Im~  + m2l/> - 1  

since I m l l - l m ~ - l l = l  if ml>~l and I m l ] - l m l - l ] = - i  if ml~<0. 
Therefore H, > 0 when n e S v does not belong to X~ also in the case J < 0. 
This shows the one-to-one correspondence between M y ( # )  and SAr(~). The 
other statements of the theorem are straightforward. | 

From the analysis of the TISOS model (6'7) it follows that the surface is 
rough in the present situation and hence the ground state on the bcc lattice 
is translation-invariant. 

3.4. General ( k  I , k2, k3) Interfaces 

The equivalences discussed in Sections 3.1 and 3.3 between ground 
states of our Ising system and SOS models are actually valid also for other 
boundary conditions #(~), k = (k lk2k3) .  We observe that by relabeling the 
axes and their orientations we may always suppose 

O <~ k3 <~ k2 <<, k l  

We shall distinguish two regions according to whether k 2 + k 3  <~kl or 
k 2 + k 3 >~kl, the boundary condition (110) being included in both of them. 
In the first region and using the notations of Theorem 3, we have: 

T h e o r e m  9. Assume that k z + k 3 < ~ k ~ ,  and define the BCSOS 
configuration r~ ~k~ ~ S~ by 

B~kl = inf{xl [ x e l_, x 1 k t + x 2 k  2 + x 3 k 3 >/0 and Tc(IO0)(X) = i} 

Suppose also that V is a cylinder as in Theorem 3, and let A = rc(~~176 
Then there is one-to-one correspondence between the ground con- 
figurations M y ( #  (k)) and the BCSOS configurations Z'A~(r~ (k)) which maps 
the ground state #~H(O-v] #(k)) into the state #~,~ A I r~(k)). 
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Under the hypothesis of the theorem, the boundary condition #(~/ 
belongs to the set f2~, considered in Theorem 3, and is associated with the 
configuration ~(k)e~'g. The proof then follows using the one-to-one 
correspondence between f21 and Z'5 as that of Theorem 3. Notice also that 
the weak ground states ,,ooJ0.~t,, t~ v ~ v [ #  (~)) of Theorem 5 are mapped by this 
correspondence into the states /~B'c~(rt A l/q(k)), and that the cases J >  0 or 
J < 0  can be considered as the limiting situations where c~= oe and 

= -0% respectively (see the proof of Theorem 4). 
Similarly, in the complementary region k2 +k3 ~>kl, we have, using 

the notations of Theorem 8, for any J>/ --2J0, the following result. 

T h e o r e m  10. Assume that k2+k3>~k j  and let ~(k)eZ'~ be the 
TISOS configuration 

~I k) = inf{v(x)  l x e {k, X 1 kl + x2k2 -I- x3k 3 >/0 and 7r~n 1)(x) = i} 

Suppose also that V is as in Theorem 8 and let A = ~L~t(V). Then, there is 
a one-to-one correspondence between the ground configurations Mv(#/kl) 
and the TISOS configurations XAr(~ (kl) which maps the ground state 
#~H(av[  #(k)) into the state #Ar'0(nA ]/q(~c)). 

This shows how in the study of these ground states we are always led 
to consider the BCSOS and TISOS models with boundary conditions. 
Without going further into their study, let us only mention that we expect 
rough interfaces for the ground states under these general boundary 
conditions. 

4. ISING MODEL ON A BCC LATTICE: 
EQUILIBRIUM CRYSTAL SHAPES 

We shall now consider the Wulf construction of the equilibrium crystal 
�9 shape of a droplet of opposite phase. We are again led to BCSOS and 

TISOS models. The formation of facets, including a computation of their 
form, based on these two models was discussed in detail by Jayaprakash 
etal.  (24'25) and Nienhuis etal.  (6'7) and we are not going to repeat their 
calculations here. Instead, we shall stress the unity of the description by 
showing how both BCSOS and TISOS models appear naturally when con- 
sidering the low-temperature asymptotic behavior of a single model, that is, 
the Ising model on a bcc lattice. Namely, as we saw already in Theorems 9 
and 10, taking the boundary condition #(k) corresponding to an interface of 
an arbitrary orientation k (without loss of generality we always suppose 
O<~k3<,kz<,kt) ,  the ground configurations from M v ( ~  ~k~) are con- 
figurations satisfying the BCSOS condition whenever k2+ k3 ~<kl, while 
they satisfy the TISOS condition if k 2 + k3 >~ kl.  Thus, when computing the 
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low-temperature asymptotic behavior of the orientation-dependent surface 
tension z(k) (interface free energy), the main ingredient of the Wulf 
construction, (L2) we may for all orientation rely on either the BCSOS or 
the TISOS models. 

The surface tension r(k) is defined by 

1 1 Zv(#(*))'~ 
z(k) : lim log Z - - - ~  ~ / =  lim rv(k) 

vwL fl ISc~ Vl vT~ 

where ]Sc~ V] is the area of the intersection of the surface k~x~ +k2x2+ 
k3x3 = 0  with V (thinking of V for a while as a subset of R 3) and we recall 
that Zv(# ~)) [resp. Zv(a + )] is the partition function in V under the boun- 
dary condition #(k) (resp. a+:  a + = +1 for every x e  k). The limit is over 
suitably chosen finite volumes V such that L S r~ VI ~ ~ .  Unfortunately, we 
are in general not able to control this limit and thus we shall consider only 
the asymptotic behavior of rv(k), believing that it also remains valid after 
the thermodynamic limit is performed. 

First, let us consider the Wulf plot at zero temperature, where the only 
contribution to the surface tension is the excess of energy of the interface 
over the energy of a translation-invariant ground state a+,  normalized to 
the unit of area: 

e (k )=  lim Ev(k)/lSrn V] 

with 

Ev(k) = H v ( f f )  I # (*)) - Hv(~r + ]0 -+ ) = IScn V] ev(k) 

T h e o r e m  11. The excess of energy of the (klk2k3) interface per 
unit area is, for k2 + k3 ~ kl,  

e(k)=8(Jo+ J ) k  ~ if J~<0 

e (k )=8Jok l+4J (k l+k2+k3)  if J~>0 

and, for k 2 + k3/> ks 

e(k) = 4(J 0 + J)(k 1 + k 2 + k3) 

(we suppose that k is normalized to unity). 

Proof. Let us denote by ~o(k) the inverse of the ratio (in the limit 
I S ~ V l ~ o o )  of the area I S ~ V I  to the area I A~F of its orthogonal 
projection A1 = ~1~176 r~ V) for k2 + k3 ~< kj: 

~o(k) -- lim(lA~ I/I S n VI) = (k, (1, 0, 0)) = k, 
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and to the area IA2I of the projection A 2 = Jz(lll)(Sc5 V) for k2 + k3 >/k~: 

(.o(k) = (k, ( 1 / ~ ,  1 / ~ ,  1 / ~ ) )  = ( 1 / ~ ) ( k  t -t- k 2 + k3) 

We first compute e(k)  for k 2 + k 3 < ~ k l .  Let us denote by N~(A1) the num- 
ber of elementary squares of the lattice 5 inside A i, and notice that 
2 ]AI{ = N~(A 1). If es(k) denotes the average excess energy per elementary 
square, we have (up to boundary terms) 

Ev(k )  = N s ( A 1 ) e s ( k ) =  2 lAx] e,(k)  

and thus 

e(k) = 2o)(k) G(k)  = 2k~G(k)  

Now, in the case J <  0, we have seen in the proofs of Theorems 4 and 9 
that e,(k)  is independent of the boundary condition, since the ground con- 
figurations always satisfy the condition Fn~-nil = 1 for one pair of n.n.n, in 
each square. Hence, if J <  0, we have 

G(k)  = - 2  ]J] + 4 J  0 - 2  [J] 

with the first term corresponding to the energy of the BCSOS configuration 
and the last two, 4J  0 -  2 ]J[, taking into account its normalization. Thus 
we get the first formula of the theorem. 

In the case J >  0, the energy of the ground configurations depends on 
the boundary condition #(k~. We shall have ]ni -n j l  = 1 for the minimum 
possible number of n.n.n, compatible with #(k), and ]ni-nj]  = 0 for the 
remaining n.n.n. Since the increase of height of the plane k~x 1 + k 2 x 2 +  
k3 x3 = 0 above A1 along the diagonals of a square of the lattice 5 is - k z / k  1 
in the direction x2 and - k 3 / k ~  in the direction x3, we must have (think of 
A~ as a rectangle) 

and therefore 

E n n n  
il + I1 = i2 + J2 

Ennn 
II Ji = ~2 J2 

[ni -- nil = Ns(A 1)(k2/k~) 

I n~ - nil = N,(A~)(k3/k t  ) 

es(k) = 2J(k2/kl  + k3/k~) + 4J o + 2J  

Then, from e ( k ) =  2kles(k) ,  the second formula of the theorem follows. 
Finally we consider the case k2 +ka  ~>kl. Let N~(A2) be the number of 

elementary triangles of the lattice ~ inside A2, and let e~(k) be the average 
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energy per triangle. Since the area of each triangle in A 2 is 1/(2 ,,f13) 
(observe that the projection of a cube of side one of the lattice ~_ is an 

hexagon of area xfl3 and contains six triangles), we have 

e (k)=  Ev(k)/]S ~ VI = [N,(A2)/IS c~ VII e,(k ) 

= 2 ~/3 ~(k)  e,(k) = 2(kl + k2 + k3) e,(k) 

From Theorems 8 and 10 we know that the ground configurations con- 
tribute the same value to et(k), independently of the boundary condition 
(for all J >  -~Jo), namely, that of the TISOS model. Hence, we get 

e,(k) = 2J 0 + 2J 

This proves the third formula of the theorem. I 

The Wulf plot, that is, the set of points m = z(k).k, is in the region 
0 ~< k3 ~< k2 ~ kl the external envelope of the following two spheres: 

and 
m ~ + m Z + m ~ - 4 ( J o + J ) ( m l + m z + m 3 ) = O  for all J > - ~ J o  

m ~ + m ~ + m : ~ - 8 ( J o + J )  m~=O if J < 0  

m ~ + m ~ + m ~ - ( 8 J o + 4 J ) m ~ - 4 J m  2 4Jm3=0  if J>~0 

We complete the Wulf plot by rotating twice the diagram by an angle 2~/3 
around the (111) axis and then taking the symmetries with respect to the 
coordinate planes. 

It is easy to observe that the Wulf construction yields a complete 
faceted shape. For J < 0  it has 12 facets of type (110), and passing from 
negative to positive values of J, six new facets of the type (100) develop. 

Let us inspect more closely the region around J =  0 at nonvanishing 
temperatures. The ground configurations are not unique and one should 
thus take into account also the contribution of the entropy of the ground 
states. Our claim generically is that this entropy may be described in terms 
of an SOS model. Namely, 

lira [~z v(k ) - /3ev(k)]  = - ( 1 / I S  c~ VI) log 7sos 

with 7sos denoting (according to the orientation k) either the BCSOS or ~(v) 

the TISOS model partition function under the boundary condition 
corresponding to k (i.e., respectively, ~k} or ~k) of Theorems 9 and I0). 

Indeed, referring briefly to Theorems 9 and I0 and observing that 
every excitation brings an energy at least of order Jo, we get the following 
result. 
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T h e o r e m  12. 
I. Suppose that V is a cylinder satisfying the conditions of 

Theorem 3, with base A = rt(l~176 and let k be such that 0 ~< k3 ~< k2 ~< k~ 
and k 2 + k3 ~< k~. Then the surface tension v v(k) at the inverse temperature 
/3 and with n.n.n, coupling J =  e//3 may be expressed by 

1 1 ~v(k) = @=~ - -  log[e2~lV'(A)z~'~(~(~))] + O(e flJo) 
/3 I sc~ v[ 

where ev(k)  is taken at J =  0 and N~.(A) is the number of lattice sites in A. 

II. Suppose that V is a cylinder satisfying the conditions of 
Theorem 8 with base A = rc/m)(V), and let k be such that 0 ~k3 ~< k2 ~k~ 
and k2 + k3 >~k~. Then the surface tension ~v(k) at the inverse temperature 
/3 and with n.n.n, coupling J >  -}J0  may be expressed by 

1 1 
z v(k) = e v(k) - -  log Z~,~ (k)) + O(e --flJo) 

/3 I sc~ vI 

Let us notice that while the ground-state entropy term is proportional 
to the temperature 1//3, the rest is of the order e-eS~ and thus much smaller 
at low temperatures. Unfortunately, we do not have a bound on the rest 
uniform in IS m V] and thus we can only conjecture that the first two terms 
yield the leading asymptotic behavior also in the thermodynamic limit. 

This conjecture may actually be supported by the following arguments. 
First, one introduces the description of configurations in terms of contours 
separating completely ordered areas. Observing that the configurations 
contributing to Zv( f f  ~e~) always contain a large interface contour 2 
separating the region of the ( + ) phase above 2 from the region of the ( - ) 
phase below ~, one may evaluate 6 

, } log [ ~ ~ exp [/3 j S ~ vr e v(k) ] - log ZS(~ ,~ 

by 

Z~ exp [ - f i l ly(2)  - / 3 H v ( ~  v t ~) ] 
log 

~2;,,sos exp[ - /3H~(2) ]  

Here the sum in the numerator is over all interfaces 2 compatible with the 
boundary condition with energy contribution Hv(2), while the sum in the 
denominator is only over the interfaces of SOS type with H~(2) the 

6 In the case k 2 + k 3 ~< kl we take ea~7~ and include into Z~v)S~ the term e 2~Ns(A). 
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corresponding energy {from Section 3, it equals OA(rl A ]/~) - -  mA(rl A ]t l )  
[ r e sp .  HA(I'IAIFI)--HA(FtA[~t)] with a suitable r/A corresponding to 2}. In 
this evaluation we disregarded the terms that follow from standard low- 
temperature cluster expansions applied to the ( + )  phase in the region 
above 2, to the ( - )  phase below 2, and to the partition function Zv(a+). 
These terms would eventually lead to an error of order t~c(V)l e ~s0, which 
is compatible with our claim. Now, mimicking the standard treatment 
given in Refs. 17, 15, and 26, we may consider those parts of the interface 2 
that are locally [over an elementary square (resp. triangle) of the projec- 
tion 7c(V)] not of the SOS type as excitations walls, in the terminology of 
the works just quoted. The remaining parts of 2 are surfaces of an SOS 
type and play the role of the ceilings of Refs. 17, 15, and 26. The idea, then, 
is that for introducing a wall one pays by an energy proportional to its 
area [compared with Hv(av[ ~)], a fact that would with not much effort 
finally lead to an estimate of the order ]re(V)] e PJ0. The only obstacle is 
that, even though when introducing a wall one certainly loses in energy, 
one may gain in entropy at the same time. Namely, let us consider, for 
instance, an interface ,~ corresponding to the configuration 6 l~~ Such an 
interface 2 is completely inflexible in the sense that keeping it fixed outside 
some region, it has only one prolongation inside compatible with the SOS 
conditions. One may however, consider a wall, the projection of which has 
the form of a crown, joining this inflexible interface with the region inside 
the wall made of interfaces of type (1, 0, 0) with their rich flexibility within 
SOS configurations. The gain of entropy is proportional to the area of the 
inside region, while the loss of energy linked with the considered wall 
corresponds to its area which may be in principle only of the order of the 
boundary of the inside region. One may however argue that a wall joining 
the horizontal inside with the steeply inclined outside have necessarily an 
area proportional to the area of its interior and thus the gain in entropy 
will not overweight the loss of energy following the introduction of a wall. 
However the evaluations involved may be quite tricky and we shall not 
attemt here to present a complete proof. 

Supposing the validity of the above conjecture, we shall now briefly 
discuss the Wulf plot and the corresponding equilibrium crystal shape. The 
interface free energy is approximated by 

e(k ) -  (1/fi) o~(k ) pS~ 

where (provided that the limits exist) for k 2 + k 3 ~ k~ it is 

pS~ = lim (1/]A]) Iog[e2~N~A)ZBA'~(~k))] 
AT5 
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and we put e ( k ) = e J - ~  and for k 2 + k 3 > ~ k  1 it is 

pS~ = lim (1/1A I) log zT'0(~ <k)) 
A'r7 

The function pS~ may further be rewritten. Considering the above two 
cases separately, we have the following results. 

F i rs t  Oaso:  [=or kz + k3 ~< kl �9 Using the equivalence of the BCSOS 
model with the six-vertex model, ~5~ one gets 

Here, 

pS~ = 2p~v(X, Y) 

p~v(X, y)  = l im[1 / IN(  A ) ] log Z~A,6v(X, y )  

and N ( A )  denotes the number of lattice sites in A [i.e., N ( A ) = N s ( A ) =  
2 IAI], Z~.6v(X, y) is the (canonical) partition function of the six-vertex 
model with the weights w~ = w2= w3= w4= 1 and w 5= w 6 = e  2~, and the 
polarizations x and y (defined as the difference between the number of up 
and down arrows divided by the number of all arrows along the respective 
axes of the six-vertex model) are those that correspond to the configuration 
/~(k).7 Realizing that x and y equal the height increments of the plane k x  = 0 
above the plane x I = 0 along the sides of elementary squares of the lattice 
5, we get 

x = (k2 + k3) /k , ,  y = (k2 - k3)/k~ 

The surface tension is thus approximated by 

8k ,Jo  - (2kl/ f l)  p~v(X, y)  

(By symmetry these formulas may also be extended to other regions of k.) 
The parameter A considered in the six-vertex theory takes the value zI = 
� 8 9  4~) and thus for ~ > a R  we have J < - 1 .  Then there is a conical 
singularity at x =  y = 0  (Ref. 28, Section 6). It corresponds to k =  (1, 0, 0) 
and leads, via the Wulf construction, to the existence of the facet (100). See 
Ref. 24 for a more detailed discussion, including a computation of the 
shape of the boundary of this facet. If ~ < an, then A e ( - 1 ,  1) and the 
facet (100) disappears (see Fig. 1 for a schematic view). Adapting the com- 
putation of the shape of the (111) facet for the fcc model from Ref. 25, 
which corresponds here to the point x = y = 1, one might study the shape 
of the (110) facets in our case. 

7 In the following we shall disregard certain problems, such as the very existence of the limit 
defining P~v (cf. Ref. 27, Section III.C) and rely on results announced in Ref. 28. 
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(101) 

f 

(41014- 

{ 
(io ) 

(t10) 

Fig. 1. The crystal viewed along the (100) direction. The central facet is the (100) facet, 
which disappears when the temperature T grows over TR(J ) (~J/~R), while the four remain- 
ing facets are of type (110). The areas where the four facets of type (I 10) meet the facet (100) 
are rounded for T >  0. 

Second Case: For kz+k3>~kl. The function pS~ is now 
given in terms of the TISOS model/63) There are three (not independent) 
polarizations 

x = ~ [ 1 - 3 k l / ( k  , + k2 + k3) ] 

2 y =  j [ 1 - 3 k 2 / ( k  1 + k 2 + k 3 ) ]  

z =  311 - 3k3/(k x + k2 + k3)] 

which :for k2 + k3 >/kl fall into the interval ( -1 /3 ,  2/3). The exact solution 
of Nienhuis eta[. (7) is, however, not formulated in terms of the 
polarizations; the authors introduce three conjugate "electric fields" 
instead, and consider the Legendre transformation of the model, which is 
directly linked with the equilibrium shape of the crystal. ~29) We shall not be 
concerned with detailed calculations and we only present a schematic view 
along the axis (111 ) of the resulting crystal (Fig. 2). 

822/47/5-6-13 
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(101} 

\ /  
(0111 

\ /  
(11o) 

Fig. 2. The crystal viewed along the (111) direction. The area around this direction where 
the three facets of type (110) meet is rounded for T> 0. 

Finally, let us notice that in both figures, the same facets of type (110) 
appear. One could thus in principle compare their shape calculated, in the 
considered approximation,  with the help of the BCSOS (25) and the 
TISOS ~7) models. 
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NOTE A D D E D  IN P R O O F  

We have recently learned that Miekisz ~3~ has found a counterexample 
to the Dobrushin-Shlosman conjecture. However, this counterexample 
does not seem to be related to the models discussed in this paper. 
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